

Table of Contents
1 Introduction 5

1.1 Acknowledgement 5
1.2 Problem and Need Statement 5
1.3 Operational Environment 5

2 Requirements / Specification 5
2.1 Functional Requirements 5
2.2 Non-functional Requirements 5
2.3 Engineering Constraints 6
2.4 Market / Literature Survey 6
2.5 Deliverables 6

3 Project Plan 7
3.1 Task Decomposition 7
3.2 Risks And Risk Management/Mitigation 8
3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria 8
3.4 Project Timeline/Schedule 9
Figure 1: Proposed Project Timeline 9
Figure 2: Actual Project Timeline 10
3.5 Project Tracking Procedures 10
3.6 Other Resource Requirements 10
3.7 Financial Requirements 10

4 Design 10
4.1 Concept Description 10
4.2 Concept Sketch / Block Diagram 10
Figure 3: Block Diagram For Admin Panel 11
Figure 4: Block Diagram For Frontend 11
4.3 Proposed Design 11
4.4 Development Process 12
Figure 5: Development Cycle Diagram 13
4.5 Design Plan 13
Figure 6: Component Diagram 14
4.6 Evolution of Design From 491 14
4.7 Security Concerns and Countermeasures 15

5 Testing 15
5.1 Unit Testing 15
5.2 Interface Testing 15
5.3 Acceptance Testing 15
5.4 Results 16

6 Implementation 16

2

6.1 Implementation Details 16
6.2 Related Literature and Products 17
6.3 Rationale for Technology / Software Choices 17
6.4 Standards 17

7 Closing Material 18
7.1 Conclusion 18
7.2 Lessons Learned 19
7.3 Future Work 19
7.4 References 19

Appendix I - Operation Manual 20
A.1 Frontend Manual 20
A.2 Backend Manual 26
A.3 Admin Manual 27
A.4 Animation Manual 29

3

List of figures

Figure 1: Proposed Project Timeline

Figure 2: Actual Project Timeline

Figure 3: Block Diagram For Admin Panel

Figure 4: Block Diagram For Frontend

Figure 5: Development Cycle Diagram

Figure 6: Component Diagram

List of Tables

Table 1: Effort Requirements

4

1 Introduction
1.1 ACKNOWLEDGEMENT

We would like to thank Ken Johnson, Daniel Lev, and Ben Meeder for their help with this project. Their
feedback and guidance enabled us to create an excellent product and has helped us grow professionally. Our
team also thanks Professor Lotfi Ben Othmane for volunteering his time to be the faculty advisor for this
project.

1.2 PROBLEM AND NEED STATEMENT

The Boo Radley foundation is a non-profit organization created to promote research for diseases that are
common to humans and animals. Being a non-profit organization, funding for the organization is acquired
through donations and events. One of the most important events for funding is CowChips4Charity.
CowChips4Charity is currently held as an in-person fundraising event, where participants select one of
many squares in a pasture. If the cow roaming the field selects a participant’s square, they win, and are given
a prize. Any funds collected during this event contribute to The Boo Radley Foundation charity. Presently,
while beloved as a state fair event, CowChips4Charity lacks the outreach it needs to acquire more funding
for the charity. On top of this, the current need for drones (and other management equipment) ends up
costing a sizable amount, lessening the total funds used for the charity.

To reach a wider audience and cut down on unnecessary expenditure, we seek to create a fully functional
digital version of CowChips4Charity. To create this digital version, we plan on expanding the existing
codebase with features such as an animated UI and accessible menus for a wider audience, as well as
running a web service with virtually non-existent maintenance costs.

1.3 OPERATIONAL ENVIRONMENT

Our application will be run on the cloud, so there are no physical risks. While there are still possible
outages, they will be minimal due to the use of a major company's servers. As for the client application, little
processing power will be needed, as the game itself can easily be handled by modern smartphones. The
application will be used at large sporting events where there is cellular connectivity. Due to the use at
sporting events our application will need to be reliable and easy to use.

2 Requirements / Specification
2.1 FUNCTIONAL REQUIREMENTS

For our application the functional requirements include a user being able to utilize the application easily
without confusion, the application being able to scale to have many games for the user, users being able to
play from both mobile and desktop and lastly administrators being able to view usage statistics from the
site. The first major component of the application is what our team referred to as the frontend where the
user will access the web application and play the game. The other component is what we called the admin
panel, this component lets the admin control the in-game environment and allows our client to utilize the
information from the frontend.

2.2 NON-FUNCTIONAL REQUIREMENTS

Our application has three main areas of non-functional requirements. First, there is scalability. The software
needs to be able to serve many users quickly. With many sporting stadiums able to seat tens of thousands of

5

people, our software must be able to scale up to meet that demand. The events only happen intermittently
though, so we do not want to be paying for high server costs when they are not needed.

The second non-functional requirement is maintainability. The software should allow simple admin and
user control features. For admins, the people administering the games may not have a technical
background. The admin interface must be simple enough that a non-technical user can easily learn and use
it. Yet, it must still have enough features to be able to properly administer the games. Game playing users
will quickly lose interest if the UI is difficult to understand, so the flow of playing the game must be simple,
and fun.

Thirdly, our application must have good performance. The software should not be bloated with unneeded
data for it’s API calls, and users must have a quick response time. Since the application is used in sporting
arenas where cell service may not be strong, it is essential that our application is as quick and lean as
possible.

2.3 ENGINEERING CONSTRAINTS

As a software project, there are not many constraints that we must operate within.There are a few
constraints in which we must follow though. First, we must work within the existing tech stack and code
base from previous years. Also, for financial expenses, we must not spend any additional money than is
necessary. If money is needed for resources, we must gain specific approval from the project client.

2.4 MARKET / LITERATURE SURVEY

Our Project is to be built on two previous years of senior design work. As such, there is a pre-existing
website that will be built upon for this project. This website incorporates many of the necessary features to
make the game ‘CowChips4Charity’ functional. For the frontend this includes a hosted website,
login/verification, a CowChips board, and communication with the backend. The backend currently has a
hosted website, administrator login/verification, database storage, and communication with the frontend.
To make all of this functionality possible, the website currently uses technologies such as Javascript, Vue.js,
Node.js, MongoDB, CoreUI, and Heroku. Combined, these technologies offer a robust modern system,
allowing for a good looking (and effective) frontend, while also simplifying the backend communication and
data storage. The largest downfall of these technologies is our groups lack of knowledge surrounding them.
In order to prevent this negative, our group has designated a period of time to understand the current
technology in use (see section 2.4). Our additions to this project will largely revolve around an embedded
animation that will play during an event, modernizing the user interface, and recording/displaying statistics
that administrators can view after an event. Core technologies from previous senior design projects will be
heavily utilized within our new features along with new technologies such as Google Analytics and Unity.

2.5 DELIVERABLES

Due to use of an agile workflow, as well as a pre-existing codebase, design deliverables are not a core aspect
of our project. Rather, our deliverables generally take the form of implementations of functional
requirements.

6

Tech Stack Documentation

Information regarding the technologies to be used on the various ends of the project will be detailed here.
New technologies that weren’t used in past projects will particularly be used for animations on the client,
data aggregation on the server, and card verifications on the server.

Game

The game will include a fully functional (playable) game, as well as an initial implementation of the visual
style requested by the client. The playable game will allow control features from the administrator panel,
simplistic menus.

Administrator Panel

The admin panel will include all required functions for administrators, with visuals to focus more on
functional elements. Requirements, mainly revolving around data aggregation will be in place, with
customization options in place for future testing.

User Acceptance Testing

User acceptance testing began after completing all our stories and gaining approval from our client and
mentors. We started user acceptance testing in house first with our client, mentors, and team. After initial
user testing and fixing those reported bugs we moved onto real user testing with friends and family. We
provided a beta test script that walked users through our application and expectations. With that test script
users were able to report any bugs or comments at each step. This user acceptance testing will involve
testing both usability and reliability. By recording the feedback gained from these testers, we will be able to
determine any necessary features or fixes.

3 Project Plan
3.1 TASK DECOMPOSITION

We had 4 main subtasks each with their own requirements:

Design a CowChips animation to be embedded into the website: This task can be further broken down
into creating the environment for the animation, animating the environment to the specifications of the
client, and embedding the animation at the correct place in the website. This task is dependent on the UI
sending a signal to start the animation and the Results screen to distribute rewards effectively.

Update the administrator panel for hierarchical privileges and increased data: This task can be
broken down into creating a user hierarchy, implementing more usage statistics, and redesigning the look of
the existing screen for these new features. This task is also dependent on the UI as well as the new data
analytics framework.

Modernize the UI for cleanness and conciseness: This task can be broken down into updating the start
screen UI, updating the admin panel UI and updating the result screen UI. This task is dependent on all of
the existing elements as each new and old feature will need to be accessible to certain tiers of users.

7

Create a framework for data analytics: This task can be broken down into gathering and storing
appropriate data, Analyzing the newly grabbed data, and displaying the data to the appropriate users. This
task is dependent on the UI, the admin panel and the results screen as all of these pages have worthwhile
data to collect.

3.2 RISKS AND RISK MANAGEMENT/MITIGATION

Design a CowChips animation to be embedded into the website: None of us have experience with
animation. This presents a risk of meeting our deadlines, because we may have a larger learning curve than
expected. Risk Factor: 0.4. We can buy pre-built models with animation rigging set up off sites for $100-$400
if we are unable to become competent in the required skills on time.

Update the administrator panel for hierarchical privileges and increased data: The only risk for this
is the interdependencies of this with other parts of the project, such as the backend systems, and data
analysis. We have competent programmers on our team who have built similar things before. Risk Factor:
0.1.

Modernize the UI for cleanness and conciseness: This task should be simple as the elements already
exist, and just need to be updated. This will require competency in Vue.js framework, which none of us have
past experience with. Risk Factor: 0.3

Create a framework for data analytics: Similarly, to the admin panel, this task has a heavy reliance on the
backend data systems to function properly. Also, there is not much test data to create visualizations from
and perform analysis. Risk Factor: 0.5. Our risk mitigation plan is to generate our own synthetic test data to
perform analysis on.

3.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

Based on the task decomposition above, we have proposed the following milestones, metrics and evaluation
criterias

Design a CowChips animation to be embedded into the website

This milestone is going to be measured by the usability metrics for effectiveness which will be calculated by
completion rate. Meaning, how long a user will take to complete the task when navigating the animation
that is embedded into the website. we will use 80% competition rate as our goal metrics. Which is the
number of tasks completed divided by the total number of tasks undertaken.

Update the administrator panel for hierarchical privileges and increased data

For updating the administrator panel for hierarchical privileges and increasing data, we will be measuring
the response time as metrics and evaluation. Since, this part of the project is the core backend system of the
project metrics and evaluation will depend on overall efficiency and usability of the administrator panel.
Which shouldn’t be longer than 10 ms per request.

Modernize the UI for cleanness and conciseness

For modernizing the UI, we will be measuring this milestone by using usability metrics for the time it takes
to finish a task. Meaning, how long a user takes to navigate to a specific dashboard or link. This can be
calculated by subtracting the end time from the start time. Finally, we’ll average out the data based on how
long each task is supposed to take. We will aim for an 80% completion rate.

8

Create a framework for data analytics:

For data analytics, since our core functionalities are gathering and storing appropriate data, and analyzing
the newly grabbed data, and displaying the data to the appropriate users. Our evaluation criteria for data
analytics is that we are able to store and display 100% of the data we are analyzing. For instance we don’t
want the number of donations and amount of money generated from a specific game to be inaccurate or
missing certain donations.

3.4 PROJECT TIMELINE/SCHEDULE

Figure 1: Proposed Project Timeline

9

Figure 2: Actual Project Timeline

3.5 PROJECT TRACKING PROCEDURES

Our group will be using Github and Jira to keep track of tasks. We will keep the repository in Github, we will
keep track of stories and required tasks on a Github issue board, and lastly, we will use Miro during team
meetings as a group whiteboard style. Progress will be assessed upon completed stories and successful
implementation of features in the repository.

3.6 OTHER RESOURCE REQUIREMENTS

We do not require external hardware or other resources to complete our project.

3.7 FINANCIAL REQUIREMENTS

We have financial requirements for the animation and for the hosting of the site. We realized we needed a
professional 3D artist, so our client hired a professional animation team. The team was included in the
interviewing process and project handoff. We also are using Heroku to host our site.

4 Design

4.1 Concept Description

The CowChips4Charity application will be a web application that will be used at sporting events in order to
generate funds for the BooRadleyFoundation. An admin will create a game in the admin panel by entering a
start time, end time, winning tile, name of game, and organizations participating in the game. The frontend
of the application will have users register, login, or view more information about the application. After
logging into the application the user will then be able to play a game that an admin has created. The user
will then select an organization to support, select tiles, then donate an amount based on the number of tiles
selected. After donating the user will be able to view the game within the games list. Once the end time of
the game has passed the user will be able to watch an animation of the game and then enter their address if
they selected the winning tile. The admin will then go back into the admin panel and view the winners and
addresses and send them their prizes.

4.2 Concept Sketch / Block Diagram

The two diagrams below depict the functionality available to the users of the admin panel and the
users of the frontend. Both show functionality available to users at certain stages of the
application. And show how the user can flow to the next stage or a different stage of the
application.

10

Figure 3: Block Diagram For Admin Panel

Figure 4: Block Diagram For Frontend

4.3 Proposed Design

One of the big challenges of this project regards the animation aspect. We have been in contact
with a recent master graduate who is an expert in video game animation and design. Leveraging
her experience and knowledge, we are working on a plan to make sure that the animation aspect
of the project is done professionally and on time. Moving forward, we will be using Blender and
Unity to create and embed the animations needed into our project.

Regarding the requirements of the project, our design will work well to satisfy all items listed in
section 2. Since this project has already been in development for 2 years, we plan on leveraging the
existing tools and technologies as much as possible, whilst working within our constraints to
achieve the requirements. This means that the default design for most of the project is dependent
on the frameworks that are already in place.

11

We have decided to change out the CI/CD tool from Travis CI to GitHub Actions, as it is cleaner
and more fully functional. In addition, we have decided to move forward on the animation design
with the tools previously mentioned.

We also decided to utilize google analytics in order to track user traffic within our site and
engagement with different portions of the site. In order to track donations we will use the
schemas being used to save donation information created by a previous project. We will access
this information by creating a backend endpoint which we can query similar to the google
analytics api so that it is easy to populate our graphs for donations.

4.4 Development Process

The process we use for this project is Agile, but more specifically SCRUM. After initially conferring
with our client/mentors, we determined that a waterfall approach would lead to an overly loaded
second semester. Along with that, having a pre-established codebase to build off of requires less
overall design work, and more implementation. This fact works perfectly with SCRUM. By
compiling a list of necessary components and breaking them into bi-weekly segments (including
their respective planning), we can immediately make progress on this project, and continue it
until the final day. Another benefit to using a SCRUM model is the risk aversion. Simplifying our
tasks into smaller iterations allows us to verify each task with our clients/mentors at meetings,
ensuring we are creating exactly what they want, while also ensuring the task is possible (in its
current design) before dedicating a large amount of time to it. Overall, our decision to use SCRUM
is to provide the flexibility a client-facing project such as this requires.

12

Figure 5: Development Cycle Diagram

4.5 Design Plan

13

Figure 6: Component Diagram

Description of Components:
Vue Frontend
This is the frontend of the application which is located at https://www.cowchips4charity.com/ .
This module is the interface of the app that is visible to the users. It leverages vue.js components
for a consistent design and seamless experience due to the site being loaded once. This
component consists of modules such as the embed animation which is where we will embed the
animation for the cow chip bingo game. And view which is all of our frontend components. This
will communicate with the node.js backend api in order to complete tasks such as login and
retrieving and sending data about games and payment.

Vue Frontend Admin
This is the frontend of the application for administrators. This provides the interface in order to
create games and choose winning squares. This also will provide graphs and information about
the number of users, the amount of donations per game, total donations, what the users are
interacting with on the site. This will communicate with the node.js backend in order to retrieve
information about the games and donation values and will send data in order to update games.
And this will communicate with the google analytics api in order to retrieve data about user
traffic.

Node.js Backend
This is the backend component of the application which communicates with the admin and user
frontend. This provides an api for the frontend to communicate with. The backend also takes care
of payments through stripe. And communicates with the database in order to update information
about games, users, and donations. It will also be able to retrieve data about donations for the
admin panel.

4.6 Evolution of Design From 491

Our design from 491 has evolved considerably. As we dove deeper into the project we discovered
new things that we had not thought about at the initial onset of the project. We thought of certain
situations where a user could stay on the tile selection screen until after the animation had started
and then pick the winning tile based on seeing what the winning tile is on another device. We
added a stage in our flow seen in figure 4 which checks if the game time has passed before
allowing a user to move onto the donation screen. We also needed to add a stage after the
animation which ensured we received the winning address from winners as we were not
prompting users to enter an address in order to create an account as we wanted to make the
process to donate as easy as possible for a user. We also decided to include a games list that
included a countdown to the endtime of a game versus having a countdown screen immediately
after donating. This gives the user an easier experience to find where to access a game. There were
also many small evolutions in design we made of which not all can be listed here. We also made

14

https://www.cowchips4charity.com/

many iterations on the design and implementation from week to week based on feedback from
our clients and mentors as we were utilizing an agile methodology and trying to receive as much
consistent feedback as possible in order to provide the best end product for our client.

4.7 Security Concerns and Countermeasures

Our main security concerns are keeping user information secure and also ensuring secure
payment. In order to keep user information secure we ensure passwords are hashed so that
passwords can’t be found by looking at the database. We use Stripe for payment so we keep
payment secure by utilizing Stripe instead of implementing payment processing ourselves. Also no
credit card information is stored in our database. This will ensure any user of our application will
not have their credit card information stolen and card used for transactions they do not approve
of.

5 Testing

5.1 Unit Testing

We test the basic functionality of small units of our software in isolation. Our goal for unit testing
is to have code coverage above 90%. This will give us great confidence that our units are
performing as expected and it will make it easier to debug if something is failing. We used a Test
Driven Development approach and wrote the unit test for the code before we developed it. This
helped provide better quality of tests and helped to ensure the tests fail until implemented. All of
our unit tests were run every time a team member pushes code to the repository to ensure that the
code is still performing as expected.

5.2 Interface Testing

Interface testing will consist of how multiple components interact with each other. Interface
testing is vital because it will make sure components are working together as expected. Some of
the tests will include: integrations with APIs, interactions between pages, and routing. These tests
will not be included in our CI/CD pipeline but will be expected to be run by team members on a
regular basis.

5.3 Acceptance Testing

For our acceptance testing, we created demo videos and submissions after any completion of a
task and presented it to the team and clients during our weekly meetings. During that time we
would evaluate each task and receive feedback from the client and make the appropriate fixes.
After team and client testing, we created a beta test script of the application that we sent out to
our beta testers which consisted of friends and family. The test script was written with full
instructions of the purpose of the test script, steps to follow, sets of expectations per step, and a

15

feedback column for any comments or bug reports at each step. This was to help us to test the
application with real users and to understand more about user experience. Using this process we
were able to get feedback from a variety of users to help expose a variety of bugs for the team to
fix and apply those fixes to our final product.

5.4 Results

Since we are working on an existing application, there were tests already in place for the
application. After fixing the previous frontend and backend tests and the newly implemented
google analytics for site tracking, we were able to focus on other methods of testing. We continued
to have weekly meetings with our mentors and clients after new contributions in order to receive
feedback and make appropriate changes according to the feedback. After completing all our
deliverables we set for ourselves and gaining approval from the client, we started focusing on beta
testing the entirety of our application, we focused on initial in house testing that consisted of our
mentors and team members. After completing one week of in house testing we created a bug
report that lists all the initial bugs found. We followed up with our new bug fixes during our
biweekly meetings and received feedback to ensure our fixes were accepted. Once our in house
testing was complete we made a beta test script that was sent out to family and friends. We were
able to receive feedback from real users and they provided feedback on bugs we haven’t caught
before. We got feedback about the UI and application functionality, so we quickly fixed those bugs
and got those approved by our mentors and client then pushed them to production. Using this
process we were able to get constructive feedback to ensure our client and user acceptance.

6 Implementation

6.1 Implementation Details

We will implement the game using Vue.js for the frontend and Node.js for the backend, as well as
MongoDB for the database to store information for the application. The game should be able to
have reliable connections in areas with poor connectivity such as a football field. For this we will
be utilizing Amazon Web Services CDN to help with the service. Hosting and deployment will be
done using Heroku, which is a cloud platform hosting service. Additionally, we utilize Stripe to
make payments for our application. Our animation for the bingo game is created using Unity3D,
C# and Blender.

The application is implemented to be both mobile and web based. A user joins a Cow Patty bingo
game with a valid donation. After a donation is made for the game, the user is redirected to the
page with their bingo tiles. There will be a countdown to wait until the bingo game starts and once
it reaches the endtime, the user will be redirected to a link where they can view the animation
that will show the winning tile for the bingo game. Winners will receive a prize through the mail,
and all donations will be given to the Boo Radley Foundation.

16

6.2 Related Literature and Products

Our reference to literature would be through the book To Kill a Mockingbird. The name of the
foundation is based after Boo Radley, who is our project manager's dog who has passed away from
cancer. Boo Radley is also the name of a character in the book To Kill a Mockingbird, and the
character who Ken Johnson named his dog after. Some related products would include Bingo, Cow
Patty Bingo Games and 50/50 Raffles. Our product is quite similar to 50/50 raffles as all of the
money raised goes towards veterinary research and the supporters have a chance to win a prize.

6.3 Rationale for Technology / Software Choices

There are a lot of technologies that could be used so it was tough to decide what to use. We opted
to use Vue.js, MongoDB and NodeJS as the three main languages and frameworks. A large part of
this decision was that these were the languages the existing code base consisted of. The strengths
of these tools are that they are very fast, modifiable and lightweight. We wanted to make sure our
website could run on any machine to provide increased accessibility. The main weakness of these
technologies is the team's lack of proficiency going in. Most of the team had little to no
experience with these frameworks which makes it more difficult to develop with. However, as a
team we decided it was well worth the learning curve to be able to continue using these
frameworks. If we wanted to do things differently than the existing code base, we discussed other
javascript frameworks such as React. However, since we also had limited React experience we
decided it was safer and smarter to just use the existing frameworks. One last technological
consideration was deciding what tools to use for the animation. Our options were to use a 3d
modelling software such as Blender or Maya, use a game engine such as Unity or Unreal, or use
Adobe AfterEffects or Acrobat. We decided to use Blender for 3D Modeling since it was free and
some of our members had experience with Blender. We also chose to use Unity for the game
engine due to past experience team members had with the product.

6.4 Standards

We followed IEEE engineering standards closely for our application. Standards made an important
impact on everything from the development to the testing of the application. The standards we
utilized are listed below with descriptions of how we implemented them into our project.

IEEE/ISO/IEC 23026-2015 Systems and software engineering- Engineering and management of
websites for systems, software, and services information:
We utilized this standard to help manage our animations and images for accessibility purposes.
We added textual information for our users with visual disabilities and provided color
combinations to help out users who are color blind. Incorporating this standard provides
inclusivity for our users with visual disabilities and challenges. Since our website is public, it needs
to be accessible to as many people as possible, so it is very important that we adhere to these
standards during our development process.

17

IEEE 1008-1987 IEEE Standard for Software Unit Testing:
Since we need to test a wide range of components in our project, we follow this IEEE standard for
software unit testing to ensure proper component testing. Specifically, this standard mentions
which components to test and how to effectively unit test so we can guarantee a well developed
application for our users.

IEEE 1016-2009 IEEE Standard for Information Technology:
Since our stakeholders are a main proponent in how the application will be designed and
developed, communication between the stakeholders and us as developers is important. This
standard helps us communicate design decisions with our stakeholders. Primarily we use this
standard to figure out issues with quality assurance. This applies to our project as we have a lot of
communication with our stakeholders and being able to communicate effectively leads to
happiness from both sides.

IEEE/ISO/IEC 24748-5-2017 - ISO/IEC/IEEE International Standard - Systems and Software
Engineering--Life Cycle Management--Part 5: Software Development Planning:
This standard involves planning for software development, and how to improve its consistency. It
gives us a set of steps to be followed in a specific order to help us with our development process so
we maintain proper planning and meet our deadlines.

7 Closing Material

7.1 Conclusion

In conclusion, our team has largely completed the goals set out for us at the beginning of this
class. The core two goals we were given are (broadly) creation of an administrative statistics
interface, and the creation of a dynamic animation. The first goal was completed relatively quickly
in the life of this project, and the additional time following its creation was used to refine it
following comments from our client. The second goal wasn’t completed to the extent it was
initially intended. Instead, it was refined over time as it was discussed and iterated upon. We have
created the framework as well as documentation to simplify the creation of artistic aspects of the
animation.

Overall, we have greatly enjoyed working with Ken, Dan, and Ben on this project. We have been
able to learn many things that we couldn’t have learned through classes, and it was all done in a
constructive and personal way.

18

7.2 Lessons Learned

Going into this project, plenty of our members had light experience in software development and
the patterns surrounding it. We all knew either how to program in the languages, or how to
quickly gain efficacy in them. The main thing we lacked experience with though is the use of these
languages and practices in a real world environment. Having to apply them to these non-college
scenarios allowed us to rethink our use of these skills, and reassess their importance.

Take for instance our uses of meetings. In the beginning our meetings were relegated to once
every two weeks, where we would cover our progress between meetings in a loose, unspecific way.
This is the same meeting strategy we would usually employ in other classes with our peers. By the
midpoint of our second semester, this completely changed to a meeting every week, where
completed tasks were organized by both section and person. This change by our mentors led us to
be much more organized and on task, a lesson we’ll all take into our future software management
situations.

As for the technology itself, the code of previous senior design groups has shown us their massive
emphasis on testing and CI/CD. These existing implementations have made further development
much simpler than it would have otherwise been. Because of this, we all know firsthand the
importance of testing and early CI/CD implementations.

7.3 Future Work

Moving forward, the Cowchips4Charity project has one main method for expansion, the
animation. Many of the core game features are completed and even stylized, to the point where a
complete game could be played successfully by beta testers. Artistic aspects of the animation are
one of the last remaining pieces of the original vision - consisting of animations and models to be
slotted into the code frame created through the semester. Along with that, the beta testing scripts
we created could also continue to be used to keep refining the Cow Chips application until it is
ready for public use.

7.4 References

Cowchips4charity.com. n.d. Play Cow Patty Bingo To Fight Cancer! - Cowchips4charity. [online]
Available at: <https://www.cowchips4charity.com/> [Accessed 14 November 2020].

19

Appendix I - Operation Manual

A.1 Frontend Manual

Frontend Quick Start Guide
========================

This guide is intended for new developers to get started with the frontend development of
CowChips4Charity. The frontend technology used is Vue.js, HTML, CSS styling. You may use
any IDE of your choice, previous developers used Visual Studio Code or Intellij for suggestion.

========================

Setting Up Your Environment:
The following steps will help allow you to run the application on your local device. Any changes
to the application will only be seen on your local machine, until you push your code to be
reviewed and pushed to production.

1. Download the entire CowChips4Charity repository off GitHub and save those files to one
folder on your device.

2. Open up your terminal and navigate into the “cowchips-front” folder. Run the command
“npm install”, this will install the proper libraries and dependencies in order to compile
and run your code.

3. After the installation is complete, open another terminal and navigate into the
“cowchips-back” folder. Run “npm install”.

4. After the installation is complete, run the command “npm run serve” to start the
backend connection.

5. Go back to your other terminal that’s in the “cowchips-front” folder and run the
command “npm run serve”. The application will be hosted on “localhost:8080”. Navigate
to your preferred browser and enter “ http://localhost:8080/” into the address bar. You
can now see the application on your local computer.

========================

How to test the system:
The following methods of testing are suggestions that will help allow you to test the frontend
manually. These steps do not cover automated testing done by the CI/CD.

- Write test scripts. It is recommend to write test scripts for functionality and
components. You can write test scripts and add them to the “tests” folder in the
“cowchip-front” folder. Decide which type of test you created, unit or end to end (e2e),
add the test to that specific folder. After writing the test run the following commands
according to your type of test.

20

http://localhost:8080/

- Unit Test: “npm run test:unit”
- End to End: “npm run test:e2e”
- Both: “npm run test”

- Manual testing is an option too. It’s recommended to do manual testing for the UI
updates/fixes. While your server and frontend are running, make any changes in code
and save it. Open your browser and refresh to see those changes made.

- To help with individual UI testing you can right click in the browser and click
“inspect”. Using inspect will allow us to see the application on different devices,
and it can also be used to fix the UI temporarily without disrupting the entirety
of our code.

- To test games you will need to open the admin panel on your browser and set up
games. **see admin manual**

After completing the testing, push the new tests or changes to your branch for peer review.

========================

How to beta test the system:
The following helps instruct you to our beta test. It is recommended to figure out a system of
how your team would like to collect and store bug reports. We utilized jira tasks to keep track of
what the bug is, the status of when it was fixed, how it was fixed, and the results.

Before testing, navigate to the admin panel and create a game for each day once testing has
begun. This will ensure there are playable games no matter what day we are testing. This will be
beneficial especially once user testing is started, it will allow us to ensure there is a game
running no matter what day they decide to test. **see admin manual**

1. Beta Test In House: First, we suggest doing in house testing with the team, client,
mentors, before having real time users go through the application. The goal of in house
testing is to find initial bugs, so those are fixed before the application reaches real time
users. The goal is to find edge cases, and test the application on multiple devices. This is
where “inspect” on the browser is helpful in testing multiple devices. As a team you can
also utilize the beta test scripts which will walk you through the application. The beta
test script will be provided after this.

2. After completing in house testing ensure those initial bugs are fixed and those are
pushed to production. You can send out the beta test script to all outside users. They
can leave feedback on that script. It’s recommended to try to get a variety of users
playing the game simultaneously to test the ability to host many users on our servers at
once. It is also recommended to find users with a variety of different devices to test the
application and how well it works with different devices. **Because we are testing the
winning tiles, make sure you update the test script and provide the users with the
winning tile so that we can ensure some testing for winners.**

The following is our beta test script that focuses on helping the user create an account,
understand the different features of our application, and how to play a game. We will also be
able to keep track of the devices used.

21

--

Steps and expectations for beta testing

The following steps are to play a game. The left column states what actions are to be
performed. The middle column is the results that should happen/be seen after
performing the step in the left column. If your results are different than what is
expected please use the third column to provide a description of what happened
(provide any type of documentation of this issue i.e. screenshots). If the results match
then leave blank. If you have any other comments/critiques during a step please provide
those notes in the third column corresponding to that step! Thank you once again for
helping the CowChips team beta test our product!

Before beginning please provide the device you are testing with: **HERE**

First, let’s navigate to cowchips4charity.com

Steps What Should Happen What Happened

1. Go to
https://www.cowchip
s4charity.com/ on a
mobile device
(optimized for mobile
but also works on
desktop)

You could see the homepage
with options Login, Register,
About, and a PayPal option to
donate

Next, let’s create an account

Steps What Should Happen What Happened

1. On the homepage,
click Register

Enter name, email, password,
and verify password, then
click submit

You should be directed to a
form that asks for name,
email, password, and verified
email

Once you’ve clicked submit
you should be redirected to
the logged-in homepage else
you will get another error if
there is already an account
with the same information

22

https://www.cowchips4charity.com/
https://www.cowchips4charity.com/

Let’s play a new game now!

Steps What Should Happen What Happened

1. Click play on the
homepage

You will be redirected to our
game form

2. Click the organization
you want to support,
then click next

After clicking play you should
see a set of organizations to
pick from. After clicking next
it should stay on the same
screen but the tile select will
display

3. Select the tiles you
believe will be a
winning tile. (The
winning tile is the day
you’re playing the
game, please select
this tile in your
selection), then click
next

You should be able to select
as many tiles as wanted. You
should see the price of each
tile. Your donation amount
should update as you select
tiles, as well as a list of tiles
you selected... Click next for
the next step of donation
payment information.

You should not be able to
advance if you have selected
no tiles

4. Enter this
information for your
card information:
Card number enter
4242 4242 4242 4242
Expiration date: 04 /
24
CVC: 242
Zip code: 42424

You should see a payment
information screen, enter our
test card info. The amount in
the pay button should
correspond to the same on
the previous page. Click pay
“$$” and you will be
redirected to our About
screen.

5. Click the “home”
button

You should be redirected to
the homepage

6. Click “games” The game you just donated to
should appear here. There
should be the title listed for

23

the game. The organizations
that are involved in the game.
And there should be an end
time that countdown as the
end time gets closer.
Otherwise, if you have not
donated you will see a
message that tells you you
need to donate

7. On the game page,
find the game card for
the game you just
donated to and click
“View my tiles”

You should be redirected to
see your tiles, click the back
arrow to be redirected to the
game page

8. Once the timer
reaches 0 / the
current time is past
the end time. The
countdown will turn
into a link that says
Take me to the
animation. Click that
link.

The link will take you to our
animation, there should be a
loading screen with a cow it
may take up to a minute for
the animation to load and
your screen should switch to
horizontal orientation

9. The animation will
begin. The winning
tile is in yellow.

The animation is about a
minute long, look out for the
yellow tile in the field, and it
will lead to the scoreboard
with the winners

10. You will be taken to a
thank you screen.

The thank-you screen will say
Thank you for supporting the
Boo Radley Foundation! If
you have won it will ask you
to confirm your address.
Please enter your address so
that the
BooRadleyFoundation can
send you a prize. If you have
already entered your address
the page will not ask you to

24

enter your address but it will
say you are a winner.

11. You have now
completed the game.

You should have been
redirected back to the home
page

12. You’re a winner!
On the home page
click “Account”

You should be redirected to
your account information,
since you have won a game
your address should already
be displayed.

13. Click the back arrow
at the top to navigate
back to the home
page and click “Log
out”

You have officially played
your first game!

Now that you have successfully played a game, let’s test some other features of our
application

Action What Should Happen What happened

1. On the homepage
(logged out) click
“Login”

Enter your email and
password and click login

You will be directed to enter
your email and password,
then you will be redirected to
the logged-in homepage

2. On the homepage
click “Account”

Upon being redirected to the
account page, your address
should be already displayed.
Update the address fields
with a new address and click
“Submit” and you should be
redirected to the home page.

3. Click “Account”.
After verifying what should
happen, click the back arrow
to the home page.

Upon being redirected to the
account page, your address
should be already displayed.

25

4. On the homepage
click “Log out”

You should be redirected to
the logged-out home page

Testing completed! Thank you on behalf of the CowChips & Boo Radley team for taking
the time to test our application

A.2 Backend Manual

Backend Quick Start Guide
========================

This guide is intended for new developers to get started with the backend development of
CowChips4Charity. The backend technology used is Node.js and MongoDB. You may use any
IDE of your choice, previous developers used Visual Studio Code or Intellij for suggestion.

========================

Setting Up Your Environment:
The following steps will help allow you to run the application on your local device. Any changes
to the application will only be seen on your local machine, until you push your code to be
reviewed and pushed to production.

1. Download the entire CowChips4Charity repository off GitHub and save those files to one
folder on your device.

2. Download MongoDB
3. Follow prompts to set up
4. If service is not already running, run the following command as admin in a terminal

bash net start MongoDB
5. Suggested: Download one of the following

a. Download MongoDB Compass. Be sure to set Versions to a Community Edition
Version

b. Download Robo 3T.
6. Create file .env in the root directory
7. Copy information from .env-dist into .env
8. Fill in the information with your system specific info (most should be the same)
9. Run the following command to initialize db with a pre-created admin user with all

permissions set

26

https://www.mongodb.com/try/download/community
https://www.mongodb.com/products/compass
https://robomongo.org/download

bash npm run initdb
The admin credentials for the pre-created admin are
{ email: "a@gmail.com", password: "password" }
Note: If monogrestore is not found go to this site
https://www.mongodb.com/try/download/database-tools download version for your
system. Then move all of the files within the bin into
ProgramFiles/MongoDB/Server/4.4/bin. Then add C:\Program
Files\MongoDB\Server\4.4\bin\ to your Path environment variable.

10. Open up your terminal and navigate into the “cowchips-back” folder. Run the command
“npm install”, this will install the proper libraries and dependencies in order to compile
and run your code.

11. After the installation is complete, run the command “npm run serve” to start the
backend.

A.3 Admin Manual

Admin Quick Start Guide
========================

This guide is intended for new developers to get started with the development of the admin
panel for CowChips4Charity. The technology used is Vue.js, Vuetify, CoreUI, and Google
Analytics. You may use any IDE of your choice, previous developers used Visual Studio Code or
Intellij for suggestion.

========================

Setting Up Your Environment:
The following steps will help allow you to run the application on your local device. Any changes
to the application will only be seen on your local machine, until you push your code to be
reviewed and pushed to production.

1. Download the entire CowChips4Charity repository off GitHub and save those files to one
folder on your device.

2. Follow the instructions to setup the backend
3. Navigate to cowchips-admin and run npm install
4. After the installation is complete, run the command “npm run serve” to start the admin

panel.

========================

How to view winners of the game:
1. Go to admin.cowchips4charity.com

27

https://www.mongodb.com/try/download/database-tools
http://admin.cowchips4charity.com

2. Click the games tab
3. Type in the name of the game you want to view winners for in the search bar
4. Click the drop down to the left of the search bar. Select name.
5. Click search. And your game should appear.
6. Click the trophy icon within actions for your game.
7. The names of all winners will appear. Their address will be populated here if they have

entered it after viewing the animation. If not just their name and email will appear.
How to view website traffic:
Option one: view the dashboard within the admin panel

1. Go to admin.cowchips4charity.com
2. Click the Dashboard tab
3. Click Access Google Analytics
4. A pop up will open. If it says this site is not trusted, click advanced and continue. Then

enter your email address and password that has access to google analytics data. If you
don’t have access to Google Analytics data for CowChips4Charity ask someone who has
access for access.

5. The charts will now be populated with the data for the past month.
Option two: view the data within google analytics

1. Go to analytics.google.com
2. Enter email and password
3. Click the dropdown in the upper left corner and select BooRadleyFoundation ->

CowChipsFront - Production -> All Website Data
4. You can then click on the reports at the left hand side of the screen in order to see

reports of the usage of cowchips4charity.com

How to view google analytics api usage from google dev console:
1. Go to console.developers.google.com
2. Enter email and password to login
3. Click the dropdown in upper left corner and select Cow Chips Admin
4. Click the menu button in the upper left corner and select APIs and Services
5. Then click on Google Analytics API

How to view google tag manager:
1. Go to tagmanager.google.com
2. Enter email and password to login
3. Click the dropdown in the upper left corner click BooRadleyFoundation ->

www.CowChips4Charity.com

28

http://admin.cowchips4charity.com

A.4 Animation Manual

Quickstart Guide

Quick Start Guide
=================

This guide is intended to help a new developer get started with the
animation aspects of the Cowchips4Charity program. The core of this
aspect is written in Unity, with the build being exported to the website
for display. The version of Unity used is the current 2019 LTS version,
2019.4.23.f1. This choice was to maintain use of Unity WebGL build
specifics (UnityLoader.js, json organization), and would result in those
aspects not working if the build was upgraded to 2020 or beyond.

Preparation for Development

Steps:

1. Download the Current LTS Version of Unity (**2019.4.23.f1**)
- Recommended modules: Visual Studio, WebGL Build Support,
Documentation

2. Add the Project to Unity Hub from the root file
`CowChips4Charity-Animation`

3. Review the `ReadmeTableOfContents-Cowchips.md` file to understand
the file Hierarchy

4. Start Adding!

Unity Beginner Notes

- All files are in the Project tab (by default in the bottom left)
- Scenes (in the Assets/Scenes folder) can be opened to show a

particular view
- Active objects in a scene are shown on the left, in the Hierarchy

tab (most are under a canvas object)
- Referenced scripts are attached to various objects (shown in the

Inspector tab on the right)
- The play button at the top center allows you to play the game from

the current scene

Building the Project

Note: Building requires the Unity environment be set up, which is
provided by the **Preparation for Development** section of this guide

29

Steps:

1. From the Unity Project, Select `File -> Build Settings`
2. Under the **Scenes In Build** Section, Use the `Add Open Scenes`

Button to Add Used Scenes
- This section should already have all required scenes (2 total)
- Make sure the `Main` scene is selected as the starting scene

3. Under the **Platform** Section, Select `WebGL`
4. Under the **WebGL** Section, Select an appropriate Target Platform

and Architecture
- Other options aren't needed unless you specifically want to use
them
- **Development Build** leaves the build uncompressed but with a
watermark saying the build is a dev build

5. Select the **Build** button on the bottom of the window
6. Choose a Location to Build the File (A Build folder exists at

`CowChips4Charity-Animation/Build`)
7. The Build is Complete!

Running the Project

Note: The project must be built in order to run it. Use the **Building
the Project** section to build it. **Make sure to select the appropriate
target platform for where you plan to run it (eg. WebGL or Windows)**

Steps:

1. Find the Location of the Build in a File Explorer
- The Default location is the Build File in
`CowChips4Charity-Animation/Build`

2. Copy the Inner Build folder to the Frontend Build Location
- The Default Build folder is located at
`CowChips4Charity-Animation/Build/Build`
- The Frontend Build location is in `cowchips-front/public/static`

3. Run the Frontend
4. Navigate to `http://frontend-address/animation` to view the

animation

Table of Contents

30

Cowchips4Charity-Animation Overview
===================================

This is the overall structure of the Animation section of
Cowchips4Charity. This overview is not designed as a complete
description of individual files, but rather a broader description of
certain sections. Below the tree structure there are explanations of the
most important files (and sometimes important files located inside them)

Folder Overview

+---CowChips4Charity-Animation
| +---Assets
| | +---AnimationControllers
| | +---Classic Skybox
| | | +---01
| | | +---02
| | | +---03
| | | +---04
| | | +---05
| | | +---06
| | | +---07
| | | +---08
| | | +---09
| | | +---10
| | | +---11
| | | +---12
| | | +---13
| | | +---14
| | | \---15
| | +---JsonDotNet
| | | +---Assemblies
| | | | +---AOT
| | | | +---Standalone
| | | | \---Windows
| | | \---Documentation
| | +---Models
| | | \---Materials
| | +---Plugins
| | | \---WebGL
| | +---Prefabs
| | +---Resources
| | | \---Materials
| | +---Scenes
| | | +---Main
| | | \---SampleScene

31

| | +---Scripts
| | \---TextMesh Pro
| | +---Documentation
| | +---Fonts
| | +---Resources
| | | +---Fonts & Materials
| | | +---Sprite Assets
| | | \---Style Sheets
| | +---Shaders
| | \---Sprites
| +---Build
| | +---Build
| | \---TemplateData
| +---Core
| +---Library
| +---Logs
| +---obj
| +---Packages
| +---ProjectSettings
| \---UserSettings
+---ModelFiles
\---Renders

Important Folders

CowChips4Charity-Animation/ Assets

- This folder holds everything in the Unity project that is not
automatically generated (scripts, models, scenes)

CowChips4Charity-Animation/Assets/ Models

- This folder holds all models that are imported into Unity (before
they are converted into prefabs)

- Materials and Textures for these models are stored alongside them

CowChips4Charity-Animation/Assets/Plugins/ WebGL

- This folder holds Unity's access to JavaScript functions when built
for WebGL

- `javascript.jslib` defines the JS functions to be called elsewhere
- `javascript.cs` imports the jslib functions, and offers simpler

access to other .cs functions

CowChips4Charity-Animation/Assets/ Prefabs

32

- This folder holds the models that have been implemented into Unity
(have attached scripts, or are combined)

CowChips4Charity-Animation/Assets/ Resources

- This folder holds Models and Prefabs that need to be dynamically
added to the scene
- This can be done using the function `Resources.Load()`

CowChips4Charity-Animation/Assets/ Scenes

- This folder contains the Scenes used in the animation
- Currently there are only two scenes, Main (the stadium animation)

and WinnersScene (The Scoreboard)

CowChips4Charity-Animation/Assets/ Scripts

- This folder holds .cs files that control the progression of the
animation

- `BillboardController` This file controls all actions taken by the
billboard (creating tags, parsing the data from DataController, and
finishing the animation)

- `BoardController` This file controls all actions taken by the tile
board in the main animation (displaying the randomized numbers)

- `DataController` This file contains all calls taken by Unity to the
backend. All data needed is collected immediately (upon start of
unity), then is used by the various controllers to fill them with
data.

- `NameTag` This file controls the NameTag prefab, which displays the
winning players on the billboard (sets NameTag attributes, scrolls
NameTags)

- `PersistThroughout` This file ensures scenes called after Main will
keep their active elements. This is particularly with the
DataController to offer its data to other scenes.

CowChips4Charity-Animation/ Builds

- This folder holds the builds whenever they are created
- The inner `Builds` folder is the folder to be put in the frontend
- `index.html` allows a quick display of the WebGL build, but it

doesn't work because of the JS dependencies in the Plugins folder
(tests can only be done from the frontend build)

CowChips4Charity-Animation/ ModelFiles

- This folder is just an easier to access `Models` folder, and is used
only as an in-between for `Prefabs` and `Resources`

33

CowChips4Charity-Animation/ Renders

- This folder is used as storage for any rendered images/videos to be
used in the project
- The loading screen for the Animation is a render that is stored
in this way

Notes

- Unity files other than the Assets aren't shown as they are largely
automatically handled by Unity

34

